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Abstract. An enveloping algebra-valued gauge field is constructed, its components are functions of the
Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the
formulation of a dynamics for a finite number of gauge field components on non-commutative spaces.

1 Introduction

Gauge theories on non-commutative spaces [1–3] cannot
be formulated with Lie algebra-valued infinitesimal trans-
formations and consequently not with Lie algebra-valued
gauge fields. In the composition of the infinitesimal trans-
formations commutators and anticommutators of the gen-
erators of the gauge group will appear, eventually gener-
ating all the higher powers of the generators. Thus the
enveloping algebra of the Lie algebra seems to be a proper
setting for such a gauge theory. This, however, is not
very attractive because the enveloping algebra is infinite-
dimensional, requiring an infinite number of coordinate
dependent transformation parameters and an infinite
number of gauge fields as a consequence.

In this paper we show that enveloping algebra-valued
infinitesimal transformations as well as enveloping
algebra-valued gauge fields can be restricted such that
they depend on the Lie algebra-valued parameters and
the Lie algebra-valued gauge fields and their space-time
derivatives only. This renders the number of independent
parameters and gauge fields to be the same as for the Lie
algebra-valued gauge theories. The coefficient functions of
all the higher powers of the generators of the gauge group
are functions of the coefficients of the first power. The
construction of the dependent coefficients is based on the
Seiberg-Witten map [3]. The existence of this map can be
proven in general [4–6], here we demonstrate this map by
explicitly calculating the expansion to first order in a pa-
rameter that characterizes the deviation from commuting
coordinates.

As a method we use the ∗-product formulation of the
algebra [7–12]. The objects are functions of commuting
variables, the algebraic non-commutative properties are
encoded in the ∗-product. In the following chapter we
introduce this formalism, it can be used for all algebras
that have the Poincare-Birkhoff-Witt property. In this pa-

per we restrict the algebra to the algebra of the non-
commuting coordinates and the Lie algebra of the gauge
group.

For non-commuting spaces the concept of a gauge the-
ory can already be introduced by defining covariant coor-
dinates without speaking about derivatives [1]. In general
the algebraic setting of the theory will require an exten-
sion of the algebra by derivatives. This formalism has been
developed for quantum planes [13].

For the canonical structure of the non-commuting co-
ordinates it is shown in this paper that the derivatives
can be obtained from the coordinates. Derivatives do not
have to be introduced separately. For several examples of
quantum planes this is true as well [14].

For the canonical structure integration can be defined
as well. This is shown in chapter 4. This allows us to for-
mulate the dynamics with an action. A gauge invariant
action for the gauge field can be constructed from the
gauge covariant tensors that agrees with the usual gauge
invariant action in the limit of commuting spaces.

The approach generalizes to other non-commutative
spaces and it is in particular possible to choose another
non-commutative internal space instead of the Lie algebra.
For an internal canonical structure this scenario has been
studied in [15].

2 Non-commutative spaces
and the ∗-product formalism

The coordinates ẑi, (i = 1, . . . N) of a non-commutative
space structure are subject to relations. We have in mind
the relations for a canonical structure

[ẑi, ẑj ] = iθij , θij ∈ C, (2.1)

for a Lie structure

[ẑi, ẑj ] = if ijkẑ
k, f ijk ∈ C, (2.2)
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or for a quantum plane structure

[ẑi, ẑj ] = iCij
kl ẑ

kẑl, Cij
kl ∈ C. (2.3)

The non-commutative space can be defined as the asso-
ciative algebra over C, which consists of the algebra freely
generated by the coordinates and then divided by the ideal
R generated by the relations:

Az =
C[[ẑ1, . . . , ẑN ]]

R . (2.4)

Formal power series are accepted. Among these algebras
we will restrict our attention to those that have a basis
with the Poincare-Birkhoff-Witt property (PBW). This
means that when considered as a graded algebra the sub-
space of polynomials of fixed degree has the same dimen-
sion as the corresponding subspace of the polynomials of
commuting variables. In this case any element of Az is
defined by its coefficient function and vice versa.

f̂ =
∞∑
L=0

fi1,...,iL : ẑi1 · · · ẑiL :

f̂ ∼ {fi}. (2.5)

: ẑi1 · · · ẑiL : denotes an element of the basis defined by
some prescribed ordering, e.g., normal order i1 ≤ i2 . . . ≤
iL or, e.g., totally symmetric. The product of two elements
will have its own coefficient function, this defines the dia-
mond product

f̂ ĝ = ĥ ∼ {fi} 
 {gi} = {hi}. (2.6)

The algebraic properties are now all encoded in the 
 prod-
uct.

Next we associate a function f of commuting variables
with an element of the algebra, say f̂ , by substituting
the commuting variable z1, . . . , zN for the non-commuting
variables in (2.5)

f̂ =
∑

fi1...iL : ẑi1 · · · ẑiL :

∼ f(z) =
∑

fi1...iLz
i1 · · · ziL (2.7)

The diamond product leads to a bilinear ∗-product of func-
tions:

{fi} 
 {gi} = {hi} ∼ (f ∗ g)(z) = h(z). (2.8)

This star product has been discussed in [1].
For the canonical structure it is the Moyal-Weyl prod-

uct [7–9]:

f ∗ g = e
i
2

∂

∂zi θ
ij ∂

∂z′j f(z)g(z′)
∣∣∣
z′→z

. (2.9)

For the Lie structure we have:

f ∗ g = e
i
2 z

lgl(i ∂
∂z′ ,i ∂

∂z′′ )f(z′)g(z′′)
∣∣∣

z′→z
z′′→z

, (2.10)

where gl is defined by group multiplication:

eiklẑ
l

eiplẑ
l

= ei{kl+pl+ 1
2 gl(k,p)}ẑl

. (2.11)

The first terms are easily calculated from the Baker-
Campbell-Hausdorff formula:

eAeB = eA+B+ 1
2 [A,B]+ 1

12 ([A,[A,B]]+[B,[B,A]])+...

gl(k, p) = −kipjf
ij
l

+
1
6
kipj(pk − kk)f ijnfnkl + . . . . (2.12)

For the quantum plane structure we have as an exam-
ple the ∗-product for the Manin plane:

xy = qyx (2.13)

f ∗ g = q
1
2 (−x′ ∂

∂x′ y ∂
∂y +x ∂

∂xy
′ ∂

∂y′ )
f(x, y)g(x′, y′)

∣∣∣
x′→x
y′→y

3 Enveloping algebra-valued connection

A non-abelian gauge theory on a non-commutative space
carries two algebraic structures, the algebra Ax discussed
above and the non-abelian Lie algebra AT of the gauge
group with the generators T 1, . . . , TM and the relations:

[T a, T b] = ifabcT
c. (3.1)

It is natural to treat both algebras on the same footing
and to denote the generating elements of the big algebra
by ẑi:

ẑi = {x̂1, . . . , x̂N , T 1, . . . , TM}
Az =

C[[ẑ1, . . . , ẑN+M ]]
R . (3.2)

The ∗-product formalism as developed in the previous
chapter can now be applied to the algebra Az as well.

We study functions of the commuting variables xν ,
(ν = 1, . . . , N) and ta, (a = 1, . . . ,M) and define the
star product reflecting the algebraic properties of the al-
gebra Az.

In the case of a canonical structure for the space vari-
ables xν we have

(F ∗ G)(z) =

e
i
2 (θµν ∂

∂x′µ ∂
∂x′′ν +taga(i ∂

∂t′ ,i ∂
∂t′′ ))

×F (x′, t′)G(x′′, t′′)
∣∣∣

x′→x,x′′→x
t′→t,t′′→t

. (3.3)

To exemplify the formalism we shall concentrate on this
structure in what follows.

To define gauge theories we first define fields. These
are elements of the algebra Ax that form a representa-
tion of the T -algebra. Under a gauge transformation they
transform as follows:

δψ̂ = iα̂ψ̂, ψ̂ ∈ Ax, α̂ ∈ Az. (3.4)
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The action of the generators T of the Lie algebra on ψ̂ is
defined as ψ̂ is supposed to form a representation of AT .
Thus δψ̂ ∈ Ax despite α̂ ∈ Az.

Independent of a representation we have defined α̂ as
an element of the enveloping algebra of the gauge group
and not as Lie algebra-valued, as we would have done it
for commuting spaces. We say α̂ is enveloping algebra-
valued. The same will be true for the connection that we
introduce to define covariant coordinates [1]

X̂ν = x̂ν + Âν , Âν ∈ Az. (3.5)

We demand that X̂νψ̂ transforms covariantly:

δX̂νψ̂ = iα̂X̂νψ̂ (3.6)

and find that this defines the transformation law of the
enveloping algebra-valued connection Âν :

δÂν = −i[x̂ν , α̂] + i[α̂, Âν ],

Âν ∈ Az, α̂ ∈ Az, δÂν ∈ Az. (3.7)

At first sight it seems that an enveloping algebra-valued
connection has infinitely many component fields and thus
is not very useful. We shall show, however, that all the
component fields can be obtained from a Lie algebra-
valued connection by a Seiberg-Witten map [3,4,6]. This
was also observed in [16], where a result in this direction
has been obtained for SO(n) and Sp(n). To show this we
cast the algebraic setting into the ∗-product formalism.
The transformation of the connection is then

δAν = −i[xν ∗, α] + i[α ∗, Aν ]. (3.8)

We treat the canonical case in more detail, the ∗-product
in this case is given in (3.3).

For the first term in the variation of Aν we obtain

−i[xν ∗, α] = θνρ
∂

∂xρ
α. (3.9)

The variation of Aν itself starts with a linear term in θ,
we therefore assume, as in [1], that Aν starts with a linear
term in θ as well:

Aν = θνρVρ

δVρ =
∂

∂xρ
α+ i[α ∗, Vρ]. (3.10)

As in [1] we expand in θ, but not in ga:

f ∗ g =
{
1 +

i

2
∂

∂xν
θνµ

∂

∂x′µ + . . .

}

×f(x, t′)� g(x′, t′′)| x′→x
t′→t,t′′→t

(3.11)

f(x, t′)� g(x′, t′′) = e
i
2 t

aga(i ∂
∂t′ ,i ∂

∂t′′ )f(x, t′)g(x′, t′′).

We first treat (3.10) to zeroth order in θ and show that
it can be solved by assuming V and α to be linear in t.
This has to be expected as θ = 0 corresponds to the usual
gauge theory on commuting spaces where the infinitesimal

transformation and the connection are Lie algebra-valued.
To zeroth order:

α = α1
at
a,

Vρ = a1
ρ,at

a. (3.12)

From the zeroth order terms of (3.10) we obtain, as ex-
pected [6]:

δa1
ρ,a =

∂α1
a

∂xρ
− f bcaα

1
ba

1
ρ,c. (3.13)

This is a classical non-abelian gauge transformation δα1

with gauge parameters α1
a.

We turn to first order in θ in the variation of Vρ, (3.10).
The contributions that come from the zero order terms of
α and Vρ are at most of second order in t. This is the
case because taga(i ∂

∂t′ , i
∂
∂t′′ ) reduces the power of t by at

least one. The terms of order zero in ga actually contribute
exactly in order t2. Their contribution to δVρ is

δVρ = θνµ∂να
1
a∂µa

1
ρ,bt

atb + . . . . (3.14)

If we now assume that the terms of α and Vρ linear in
θ are all of second order in t we get a consistent set of
equations. We define to first order in θ:

α = α1
at
a + α2

abt
atb + . . .

Vρ = a1
ρ,at

a + a2
ρ,abt

atb + . . . (3.15)

α1 and a1 are of order zero in θ and α2 and a2 of first
order. This expansion in t leads to an expansion in ga of
the �-product, because higher order t-derivatives vanish.

In the calculation that now follows we have to use ga to
the order given in (2.12). The term with three derivatives,
however, vanishes on commutators of ∗-products because
it is symmetric under the exchange of k and p.

The result of the calculation is:

δa2
ρ,abt

atb = ∂ρα
2
abt

atb

−θνµ∂να
1
a∂µa

1
ρ,bt

atb

−2f bca
{
α1
ba

2
ρ,cd + α2

bda
1
ρ,c

}
tdta. (3.16)

This can be brought closer to the form of [1]. We introduce
the Lie algebra-valued ε and the enveloping algebra-valued
Gρ:

ε = α1
bT

b, Gρ = a2
ρ,cdT

cT d (3.17)

and compute the commutator

i[ε,Gρ] = −α1
ba

2
ρ,cdf

bc
l{T lT d + T dT l}. (3.18)

This is true because a2
ρ,cd is symmetric in c and d. Now

we remember that we have used a star product that corre-
sponds to a completely symmetrical version of the mono-
mials of the bases. Thus we have to replace

1
2
{T lT d + T dT l} ∼ tltd (3.19)
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and obtain from (3.18) the corresponding term in (3.16).
The other term derives from the commutator

i[γ, aρ], with

γ = α2
bdT

bT d, aρ = a1
ρ,lT

l. (3.20)

This is exactly the structure as in [1]:

δGν = ∂νγ − 1
2
θκλ {∂κε, ∂λaν}

+i[ε,Gν ] + i[γ, aν ]. (3.21)

It has the solution already found in [1,3].

α2
abt

atb =
1
2
θνµ∂να

1
aa

1
µ,bt

atb

a2
ρ,abt

atb = −1
2
θνµa1

ν,a(∂µa
1
ρ,b + F 1

µρ,b)t
atb, (3.22)

where F 1
νρ,b = ∂νa

1
µ,b − ∂µa

1
ν,b + fcdba

1
ν,ca

1
µ,d.

The procedure can now be generalized to all the higher
powers of θ. We always assume that αn and anρ are of
power θn−1 and polynomials in t of degree n. This amounts
to a power series expansion in ga as well and the existence
of the Seiberg-Witten map to all orders follows from the
existence of the Seiberg-Witten map in the general set-
ting of the previous chapter. This is discussed in detail
in [6], where the full non-abelian Seiberg-Witten map is
constructed.

It is straightforward to generalize this formalism to a
∗-product, with a coordinate dependent θ underlying the
non-commutative, e.g. Lie or quantum plane, structure.
We give the result:

α = α1
at
a +

1
2
θνµ∂να

1
aa

1
µ,bt

atb

Aν = θνµa1
µ,at

a

−1
2
θσµa1

σ,a

(
∂µ(θνρa1

ρ,b) + θνρF 1
µρ,b

)
tatb(3.23)

For the Lie structure:

θµν = fµνκx
κ. (3.24)

For the quantum plane:

θµν = −ihxy, h = ln q. (3.25)

Let us consider once more the gauge transformations
(3.4). We see that α is not an arbitrary element of the al-
gebra Az. There are only M (dimension of the Lie group
to be gauged) free parameters α1

l (x), all the higher-order
terms in the enveloping algebra can be expressed in terms
of these parameters and the gauge field a1

ρ,l and their
derivatives. This can be achieved by the Seiberg-Witten
map.

To summarize, the Lie algebra-valued term α1
a(x)T

a of
α determines all the other terms in the enveloping algebra:

α = α1
aT

a +
1
4
θνµ∂να

1
aa

1
µ,b(T

aT b + T bT a) + . . . (3.26)

Thus a gauge transformation is determined by α1(x) and
a1
ρ(x): On a1 it is a classical non-abelian gauge transfor-
mation δα1 that, via the Seiberg-Witten map, induces the
full non-commutative gauge transformation with parame-
ter α(α1, a1

ρ). For covariant coordinates we have

δα1Xν = i[α(α1, a1
ρ) ∗, Xν ] (3.27)

and it is natural to define the action on fields by:

δα1ψ = iα(α1, a1
ρ) ∗ ψ. (3.28)

The composition of two transformations is defined for ar-
bitrary enveloping algebra-valued transformations as fol-
lows:

δαδβ − δβδα = δi(β∗α−α∗β). (3.29)

This is also true for the restricted transformation defined
by α1:

δα1δβ1 − δβ1δα1 = δi(β∗α−α∗β)1 , (3.30)

with α = α(α1, a1) and β = β(β1, a1). This reflects the
composition of standard Lie algebra-valued gauge trans-
formations. We explicitely check this to first order in θ,
using the ∗-formalism.

α = α1
at
a +

1
2
θνµ∂να

1
aa

1
µ,bt

atb

β = β1
at
a +

1
2
θνµ∂νβ

1
aa

1
µ,bt

atb (3.31)

We compute [α ∗, β] to first order in θ from (3.11):

[α ∗, β] = iα1
aβ

1
b f

ab
ct
c

+θνµ
{ i

2
∂ν(α1

aβ
1
b f

ab
d)aµ,c

+
i

2
(α1

a∂νβ
1
d − β1

a∂να
1
d)a

1
µ,bf

ab
c

+i∂να
1
d∂µβ

1
c

}
tdtc. (3.32)

Now we compute from (3.4)

(δβ1δα1 − δα1δβ1)ψ̂ = −(α̂β̂ − β̂α̂)ψ̂+ i((δβ1 α̂)− (δα1 β̂))ψ̂.
(3.33)

The second term arises because α depends on the gauge
fields a1

µ that transforms under gauge transformations

δβ1α(α1, a1
µ) =

1
2
θρσ∂ρα

1
a(∂σβ

1
b − fcdbβ

1
ca

1
σ,d)t

dtb. (3.34)

We are now ready to compute δβ1δα1 − δα1δβ1 and obtain

δβ1δα1 − δα1δβ1 = i(δβ1α − δα1β)− [α ∗, β] (3.35)

= −
(
iα1

aβ
1
b f

ab
ct
c +

1
2
θνµ∂ν(iα1

aβ
1
b f

ab
d)a1

µ,ct
dtc

)
.

This is exactly the formula (3.30) that we obtain if we
start from the Lie algebra-valued part of [α ∗, β]

[α ∗, β] = iα1
aβ

1
b f

ab
ct
c + . . . (3.36)
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This shows that our restricted enveloping algebra-valued
form of the parameters is indeed respected by the com-
mutator of two transformations.

In [1] we have introduced tensors

T̂µν = [X̂µ, X̂ν ]− iθ̂µν , (3.37)

that transform
δT̂µν = i[α̂, T̂µν ] (3.38)

under the general enveloping algebra-valued gauge trans-
formation. θ̂µν is the respective term for all the three
structures, canonical, Lie and quantum plane. Equation
(3.38) will also be true for our restricted gauge transfor-
mation (3.28).

For the canonical case to exemplify:

Tµν = iθµκ∂κA
ν − iθνλ∂λA

µ +Aµ ∗ Aν − Aν ∗ Aµ

= iθµκθνλ {∂κVλ − ∂λVκ − iVκ ∗ Vλ + iVλ ∗ Vκ} .

(3.39)

It is natural to introduce the field strength

Fκλ = ∂κVλ − ∂λVκ − iVκ ∗ Vλ + iVλ ∗ Vκ. (3.40)

It is easy to compute the first order correction to the clas-
sical field strength F 1 defined after (3.22):

Fκλ = F 1
κλ,at

a

+θµν
{
F 1
κµ,aF

1
λν,b (3.41)

−1
2
a1
µ,a

(
(DνF

1
κλ)b + ∂νF

1
κλ,b

) }
tatb.

In this formula we use the covariant derivative of F 1:
(DνF

1
κλ)b = ∂νF

1
κλ,b + aν,cF

1
κλ,df

cd
b. This expression can

also be obtained from [3].
Using the transformation law for α (3.34) and a1 (3.13)

we find as expected

δα1Fκλ = i[α ∗, Fκλ], (3.42)

with the restricted form of α.

4 Gauge covariant dynamics

The ∗-formalism can be used to formulate a dynamics on
non-commutative spaces. The coefficient functions f(x)
are the objects for which dynamical laws can be defined.
In general we have to enlarge the algebra by derivatives
for this purpose. For the quantum plane structure such
derivatives have been introduced in [13] in a purely alge-
braic approach. For the algebra extended by derivatives
the formalism developed in the second chapter can be
used.

For the canonical structure we can define derivatives
following the same strategy as for the quantum plane
structure. Derivatives have to be defined in such a way,

that they do not lead to new relations for the coordinates.
Proceeding this way we can define a Leibniz rule:

∂̂µx̂
ν = δνµ + dνρµσx̂

σ∂̂ρ, (4.1)

where the coefficients dνρµσ ∈ C have to be chosen in such
a way that

∂̂ρ {[x̂µ, x̂ν ]− iθµν} =
= δµρ x̂

ν − δνρ x̂
µ + dµνρκ x̂

κ − dνµρκ x̂
κ

+x̂κx̂β
{
dµσρκd

να
σβ − dνσρκd

µα
σρ

}
∂̂α

−iθµν ∂̂ρ (4.2)

does not lead to new relations when ∂̂ is brought to the
right hand side. This is the case if we define

dνρµσ = δνσδ
ρ
µ, (4.3)

or simply
∂̂ρx̂

µ = δµρ + x̂µ∂̂ρ. (4.4)

If we now compare this with (2.1) we see that

x̂α − iθαρ∂̂ρ (4.5)

commutes with all coordinates. This allows us to divide
the algebra by the ideal generated by the relation (see also
[17,18])

x̂α − iθαρ∂̂ρ = 0. (4.6)

The star product, known for the coordinates is now defined
for the derivations as well

∂ρ ∗ f = −iθ−1
ρσ xσ ∗ f

= −iθ−1
ρσ ([xσ ∗, f ] + f ∗ xσ)

=
∂

∂xρ
f + f ∗ ∂ρ. (4.7)

We have used (3.9).
For the canonical structure an integral can be defined:

∫
f̂ =

∫
dNx f(x1, . . . xN ). (4.8)

For the moment it is simpler to consider just functions
of xi that do not depend on the variables ta as well. The
∗-product simply is the one of (2.9):

f ∗ g = e
i
2

∂

∂xi θ
ij ∂

∂x′j f(x)g(x′)
∣∣∣
x′→x

=
∫

dNx′ δ(&x − &x′)e
i
2

∂

∂xi θ
ij ∂

∂x′j f(x)g(x′). (4.9)

δ(&x − &x′) is the product of N δ-functions:

δ(&x − &x′) = δ(x1 − x′1) · · · δ(xN − x′N ). (4.10)

We now show that ∫
f̂ ĝ =

∫
ĝf̂ . (4.11)
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We use the ∗-formalism:∫
f̂ ĝ =

∫
dNxdNx′ δ(&x − &x′)e

i
2

∂

∂xi θ
ij ∂

∂x′j f(x)g(x′).

(4.12)
Partial integration:

∫
f̂ ĝ =

∫
dNxdNx′ f(x)g(x′)e

i
2

∂

∂xi θ
ij ∂

∂x′j δ(&x − &x′).

(4.13)
The δ-function depends on &x − &x′. Thus

∂

∂xl
δ(&x − &x′) = − ∂

∂x′l δ(&x − &x′). (4.14)

This leads to∫
f̂ ĝ =

∫
dNxdNx′ f(x)g(x′)e

i
2

∂

∂x′i θ
ij ∂

∂xj δ(&x − &x′).

(4.15)
Partial integration again:

∫
f̂ ĝ =

∫
dNxdNx′ δ(&x − &x′)e

i
2

∂

∂x′i θ
ij ∂

∂xj g(x′)f(x)

=
∫

ĝf̂ . (4.16)

We also find Stokes theorem∫
[∂̂l, f̂ ] =

∫
dNx [∂l ∗, f ] =

∫
dNx

∂

∂xl
f = 0 (4.17)

from (4.7) for functions that vanish at the boundary. Par-
tial integration of the ∗-derivative follows now from (4.17)
and the Leibniz rule

[∂l ∗, (f ∗ g)] = ([∂l ∗, f ]) ∗ g + f ∗ ([∂l ∗, g]), (4.18)

which is true, because θ is x independent.
With this integral we can define an action. A tensor

that transforms as in (3.38):

δL̂ = i[α̂, L̂] (4.19)

will lead to a gauge invariant action:

W =
∫

dNx TrL̂, δW = 0. (4.20)

The trace has to be taken for the group generators. A
proper action would be

L =
1
4
Fκλ

∗Fκλ, (4.21)

where Fκλ has been defined in (3.40). The first correction
term in θ to the classical field strength has been computed
in (3.41).

We have thus formulated dynamics on a non-commu-
tative space entirely within the standard framework of
quantum field theory. The method can be extended to
the treatment of matter fields as well.
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